Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

نویسندگان

  • Haiyun Xia
  • Xiankang Dou
  • Mingjia Shangguan
  • Ruocan Zhao
  • Dongsong Sun
  • Chong Wang
  • Jiawei Qiu
  • Zhifeng Shu
  • Xianghui Xue
  • Yuli Han
  • Yan Han
چکیده

Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere.

A mobile Rayleigh Doppler lidar based on the molecular double-edge technique is developed for measuring wind velocity in the middle atmosphere up to 60 km. The lidar uses three lasers with a mean power of 17.5 W at 355 nm each and three 1 m diameter telescopes to receive the backscattered echo: one points to zenith for vertical wind component and temperature measurement; the two others pointing...

متن کامل

Performance Assessment of Mobile Rayleigh Doppler Lidars for Middle Atmosphere Research

Recently, two sets of mobile Rayleigh Doppler lidars were implemented in University of Science and Technology of China (USTC) for atmospheric gravity waves research. One of them works in a step stare scanning mode with azimuths corresponding to four cardinal points, while the other one consists of three fixed subassemblies: one points to the zenith and the two others are titled at 30° from the ...

متن کامل

Initial daytime and nighttime SOFDI observations of thermospheric winds from Fabry-Perot Doppler shift measurements of the 630-nm OI line-shape profile

In this paper we present both night and day thermospheric wind observations made with the Second-generation, Optimized, Fabry-Perot Doppler Imager (SOFDI), a novel triple-etalon Fabry-Perot interferometer (FPI) designed to make 24-h measurements of thermospheric winds from OI 630-nm emission. These results were obtained from the northeastern United States and from under the magnetic equator at ...

متن کامل

Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer.

For the first time, to the best of our knowledge, a compact, eye-safe, and versatile direct detection Doppler lidar is developed using an upconversion single-photon detection method at 1.5 μm. An all-fiber and polarization maintaining architecture is realized to guarantee the high optical coupling efficiency and the robust stability. Using integrated-optic components, the conservation of etendu...

متن کامل

Wind Retrieval Algorithms for the Wind Products of the Airborne Coherent Doppler Lidar

The airborne coherent Doppler lidar could provide the wind velocity relative to the motion of the lidar. The retrieval algorithms are complex corresponding to Ground-based lidar, due to the Doppler shift caused by mobile platform. This article gives a thorough analysis of the wind retrieval algorithms for the wind products of airborne Doppler lidar, include the correction for the lidar velocity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 18  شماره 

صفحات  -

تاریخ انتشار 2014